
Optimized and secure implementation of
ROLLO-I

Lina Mortajine1,3, Othman Benchaalal1, Pierre-Louis Cayrel2, Nadia El
Mrabet3, and Jérôme Lablanche1

1 Wisekey, Arteparc de Bachasson, Bâtiment A, 13590 Meyreuil
{jlablanche,lmortajine,obenchaalal}@wisekey.com

2 Laboratoire Hubert Curien, UMR CNRS 5516,
Bâtiment F 18 rue du Benoît Lauras, 42000 Saint-Etienne

pierre.louis.cayrel@univ-st-etienne.fr
3 Mines Saint-Etienne, CEA-Tech, Centre CMP, Departement SAS,

F - 13541 Gardanne France
nadia.el-mrabet@emse.fr

Abstract. This paper presents our contribution regarding two imple-
mentations of the ROLLO-I algorithm, a code-based candidate for the
NIST PQC project. The first part focuses on the two implementations
of the ROLLO-I algorithm, and the second part analyzes a side-channel
attack and the associated countermeasures. The first implementation
utilizes existing hardware by using a crypto co-processor to speed-up op-
erations in F2m . The second one is a full software implementation (not
using the crypto co-processor), running on the same hardware and is
publicly available on GitHub. Finally, the side-channel attack allows us
to recover the private key with only 79 ciphertexts for ROLLO-I-128. We
propose counter-measures in order to protect future implementations.

Keywords: post-quantum cryptography, side-channel attacks, ROLLO-I cryp-
tosystem

Introduction

Today, 26 candidates are still under study for the standardization campaign
launched by the National Institute of Standards and Technology (NIST) in 2016.
Among the candidates that were submitted are 8 signature schemes based on
lattices and multivariate. Also submitted were 17 public-key encryption schemes,
key-encapsulation mechanisms (KEMs), that base their security on codes, lat-
tices, or isogenies. In addition, one more signature scheme based on a zero-
knowledge proof system has also been submitted.
In this paper, we focus our analysis on the submissions based on codes. The
first cryptosystems based on codes (e.g. McEliece cryptostem) uses keys far too
large to be usable by the industry. The development of new cryptosystems based
on different codes as well as the introduction of codes embedded with the rank



2 Mortajine et al.

metric has resulted in a considerable reduction of key sizes and thus reaches key
sizes comparable to those used in lattice-based cryptography. Despite the evolu-
tion of research in this field, some post-quantum cryptosystems submitted to the
NIST PQC project require a large number of resources. Notably regarding the
memory which becomes binding when we have to implement the algorithms into
constrained environments such that microcontrollers. It is then hardly conceiv-
able to imagine that these cryptosystems may replace the ones used nowadays
on chips. In that purpose, we decided to study the real cost of a code-based
cryptosystem implementation. This study is essential to prepare the transition
to post-quantum cryptography. For this study, we decided to perform two imple-
mentations on microcontroller, the first one using only software and the second
one using the crypto co-processor featuring in the microcontroller.
One of the main criteria for the selection of the cryptosystem has been the
RAM available on the microcontroller to run cryptographic protocols. We first
decided to compare the size of elements manipulated in submitted code-based
cryptosystems. The respective sizes are reported in Table 1. Three other code-
based cryptosystems in round 2; Classic McEliece, LEDAcrypt, and NTS-KEM
use much larger keys and, thus were not taken into account in our study and
not listed in Table 1.

Parameter
Algorithm BIKE HQC RQC ROLLO

scheme number I II III I II III
public key 8,188 4,094 9,033 14,754 3,510 947 2,493 2,196
secret key 548 548 532 532 3,510 1,894 4,986 2,196
ciphertext 8,188 4,094 9,033 14,818 3,574 947 2,621 2,196

Table 1. Size of elements in bytes for code-based cryptosystems (security level 5)

The selection of a microcontroller with only 4 kB of RAM that can be found on
the market led us to choose the ROLLO-I submission. As seen in Table 1, the
total size of the parameters is the smallest one when we choose ROLLO-I and
consequently, this is the algorithm that needs the smallest amount of RAM. Since
operations on ROLLO-II and ROLLO-III are similar, they should be integrated
quickly.
However, embedded implementations can lead to vulnerabilities that can be
exploited by a side-channel attacker who gathers information about private data
by exploiting physical measurements. Some side-channel attacks have already
been performed on code-based cryptosystems [1], [2]. Then, to provide a first
secure implementation of ROLLO-I, we propose the countermeasures against
the side-channel attack that we introduced.

Our contribution. In this paper, we present two practical implementations of
ROLLO-I in a microcontroller in which 4 kB of RAM is dedicated to crypto-
graphic data. The first one consisting in full software implementation and the
second one uses the crypto co-processor featuring in the microcontroller.



Optimized and secure implementation of ROLLO-I 3

We finally give a first study on the security of ROLLO-I against side-channel
attacks and implement countermeasures against the attack that we have found.

Organization of this paper. This paper is organized as follows: we start with some
preliminary definitions and present the ROLLO-I cryptosystem in Section 1,
then we present in Section 2 the memory-optimized implementations and in
Section 3.1, we finally demonstrate a first side-channel attack on ROLLO-I and
present associated countermeasures.

1 Background

In this section, we give some definitions to explain the Low-Rank Parity Check
(LRPC) codes which have been first introduced in [3]. For more details, the
reader is referred to [4,5]. For fixed prime numbers m and n, we denote by:

q a power of a prime number p, where p is prime
Fq the finite field of q elements
Fqm the vector space that is isomorphic to Fq[x]/(Pm), with Pm an

irreducible polynomial of degree m over Fq

Fn
qm a vector space isomorphic to Fqm [X]/(Pn), with Pn an irreducible

polynomial of degree n over Fq

v an element of Fn
qm

M(v) the matrix (vi,j) 1≤i≤n
1≤j≤m

corresponding to the element v.

Let k, and n be two integers such that k ≥ n. A linear code C over Fqm of length
n and dimension k is a subspace of Fn

qm . It is denoted by [n, k]qm .
A linear code C of parameters [n, k]qm can be represented by a generator matrix
G ∈ Fk×n

qm such that
C := {x.G,x ∈ Fk

qm}.

The code C can also be given by its parity-check matrix H ∈ F(n−k)×n
qm such that

C := {x ∈ Fn
qm ,H.xT = 0}.

The vector sx = H.xT is called the syndrome of x.
ROLLO cryptosystem is based on codes in rank metric over Fn

qm . In rank metric,
the distance between two words x = (x1, · · · , xn) and y = (y1, · · · , yn) in Fn

qm

is defined by
d(x,y) := ‖x− y‖ = ‖v‖ = Rank M(v),

where M(v) = (vi,j) 1≤i≤n
1≤j≤m

and ‖v‖ is called the rank weight of the word v =

x− y.
The rank of a word x = (x1, · · · , xn) can also be seen as the dimension of its
support Supp(x) ⊂ Fqm spanned by the basis of x. In other words, the support
of x is given by

Supp(x) = 〈x1, · · · , xn〉Fq
.



4 Mortajine et al.

The authors of [5] introduced the family of ideal codes that allows them to reduce
the size of the code’s representation, the associated generator matrix is based on
ideal matrices.
Given a polynomial P ∈ Fq[X] of degree n and a vector v ∈ Fn

qm , an ideal matrix
generated by v is an n× n square matrix defined by

IM(v) =


v

Xv mod P
...

Xn−1v mod P

 .

An [ns, nt]qm-code C, generated by the vectors (gi,j)i∈[1,··· ,s−t]
j∈[1,··· ,t]

∈ Fn
qm , is an ideal

code if its generator matrix in systematic form is of the form

G =

 IM(g1,1) · · · IM(g1,s−t)

Int
...

. . .
...

IM(gt,1) · · · IM(gt,s−t)

 .

In [5], the authors restrain the definition of ideal LRPC (Low-Rank Parity Check)
codes to (2, 1)-ideal LRPC codes that they used in ROLLO cryptosystems.
Let F be a Fq-subspace of Fqm such that dim(F ) = d. Let (h1,h2) be two vectors
of Fn

qm , such that Supp(h1,h2) = F , and P ∈ Fq[X] be a polynomial of degree
n. A [2n, n]qm-code C is an ideal LRPC code if it has a parity-check matrix of
the form

H =

IM(h1)
T IM(h2)

T

 .

Hereafter, we will focus on ROLLO-I submission, which has smaller parameters
than ROLLO-II and ROLLO-III (see Table 1).

ROLLO-I scheme

The submission of ROLLO-I is a Key Encapsulation Mechanism (KEM) com-
posed of three probabilistic algorithms: the Key generation (Keygen), Encapsu-
lation (Encap), and Decapsulation (Decap) are detailed in Table 4. During the
decapsulation process, the syndrome of the received ciphertext c is computed,
then the Rank Support Recovery (RSR) algorithm is performed to recover the
error’s support. The latter is explained in [5].

The fixed parameter sets given in Table 3 allow to achieve respectively 128, 192,
and 256-bit security level according to NIST’s security strength categories 1,
3, and 5 [6]. As described in Section 1, the parameters n and m correspond
respectively to the degrees of irreducible polynomials Pn and Pm implied in the
fields Fq[x]/(Pm) and Fqm [X]/(Pn). Note that for the three security levels, q = 2.
The parameters d and r correspond respectively to the private key and error’s
ranks.



Optimized and secure implementation of ROLLO-I 5

Algo.
Param.

d r Pn Pm Security level (bits)

ROLLO-I-128 6 5 X47 +X5 + 1 x79 + x9 + 1 128
ROLLO-I-192 7 6 X53 +X6 +X2 +X + 1 x89 + x38 + 1 192
ROLLO-I-256 8 7 X67 +X5 +X2 +X + 1 x113 + x9 + 1 256

Table 3. ROLLO-I parameters for each security level

Alice Bob

KeyGen
Generate a support F of rank d
Generate the private key
sk = (x,y) from the support F
Compute the public key
h = x−1 · y mod Pn

h−−−→ Encapsulation
Generate a support E of rank r
Pick randomly two elements
(e1, e2) from the support E
Compute the ciphertext
c = e2 + e1 · h mod Pn

Derive the shared secret
Decapsulation c←−−− K = Hash(E)
Compute the syndrome
s = x · c mod Pn = x.e2 + y.e1 mod Pn

Recover the error’s support
E = RSR(F, s, r)
Compute the shared secret
K = Hash(E)

Table 4. ROLLO-I KEM protocol

2 ROLLO-I implementations

In this section we detail the algorithms in the rings F2[x]/(Pm) and F2m [X]/(Pn)
required in ROLLO-I cryptosystem. The implementations are performed on 32-
bit architecture systems.

2.1 Operations in F2[x]/(Pm)

The addition in F2[x]/(Pm) consists in xoring 32-bit words. Thus, the three
main operations to implement are the multiplication, the modular reduction, and
the inversion. For the inversion in F2[x]/(Pm), we use the extended Euclidean
algorithm for binary polynomials as given in [7, Algo. 2.48].



6 Mortajine et al.

2.1.1 Multiplication

Regarding the multiplication between two polynomials a, b ∈ F2[x]/(Pm), we
use the left-to-right comb method with windows of width w = 4 as described
in [7, Algo. 2.36]. For any polynomial a ∈ F2[x]/(Pm), we associate the vector
A = (A0, . . . , Adm/32e−1) where Aj is the jth 32-bit word and we note Aj,i the
ith block of four coefficients in Aj . First we pre-compute the product u(x)×b(x)

for all polynomials u of degree less than 4 (16 elements are stored in a table
T). Let û denote the binary representation of the coefficients of the polynomial
u(x) (i.e u(x) = 0 ↔ û = 0, u(x) = 1 ↔ û = 1, u(x) = x ↔ û = 2, · · · , u(x) =
x3 + x2 + x+ 1↔ û = 15). Thus, we have Tû = b(x)× u(x).
Then, for 0 ≤ j < dm/32e, we add to the result Rj = (Rj , . . . , Rn), the element
Tû where û is the integer associated to Aj,i, for each i. If i is non zero, we
multiply the polynomial R by x4, which is equivalent to a shift of 32-bit words.

Algorithm 1: Polynomial multiplication using the left-to-right method
with a width window w = 4

Input: Two polynomials a, b ∈ F2[x]/(Pm)
Output: r(x) = a(x)× b(x)

1 For all polynomials u(x) of degree at most w − 1, compute Tû = b(x)× u(x)
2 R← 0
3 for i from 7 downto 0 do
4 for j from 0 to dm/32e − 1 do
5 Let û = u3u2u1u0 where uk is the bit wi+ k of Aj .
6 Rj ← Rj ⊕ Tû

7 if i 6= 0 then
8 R(x)← R(x)× x4

9 return R

2.1.2 Modular reduction

Several modular reductions with parse polynomials are being performing in
ROLLO-I cryptosystem. We decide to use the same technique explained in [7,
Sec. 2.3.5].
Let us take the example of ROLLO-I-128 and consider an element c = (c0, · · · , c156)
obtained after a multiplication in F2[x]/(P79). The modular reduction is per-
formed on each 32-bit word composing C = (C0, C1, C2, C3, C4) as in Algo-
rithm 2.

Allow us detail the method for the reduction modulo Pm(x) = x79+x9+1 of the
4th word of C which corresponds to the polynomial c96x96+c97x

97+· · ·+c127x
127.



Optimized and secure implementation of ROLLO-I 7

We have:

x96 ≡ x17 + x26 mod Pm

...

x127 ≡ x48 + x57 mod Pm

Given those congruences, the reduction of C3 is operated by adding two times
C3 to C as shown in Figure 1.

Fig. 1. Reduction of the 32-bit word C3 modulo Pm(x) = x79 + x9 + 1

Algorithm 2: Reduction modulo Pm(x) = x79 + x9 + 1

Input: polynomial c(x) of degree at most 156
Output: c(x) mod Pm(x)

1 C2 ← (C4 � 6) ⊕ (C4 � 15)
2 C1 ← (C4 � 17) ⊕ (C4 � 26) ⊕ (C3 � 6) ⊕ (C3 � 15)
3 C0 ← (C3 � 17) ⊕ (C4 � 26)

4 T ← C2 & 0xFFFF8000

5 C0 ← C0 ⊕ (T � 15)
6 C1 ← C1 ⊕ (T � 6)
7 C2 ← C2 ⊕ (T � 22)
8 C2 ← C2 & 0x7FFF

9 C3, C4 ← 0
10 return C

2.2 Operations and memory costs issues in F2m [X]/(Pn)

In this section, mb represents the length in bytes of one coefficient in F2m .

2.2.1 Multiplication

The multiplication in F2m [X]/(Pn) is one of the most used operations of this
cryptosystem: it is involved in the computation of the public key, the ciphertext
and the syndrome.



8 Mortajine et al.

For example, let P (X) = p0 + p1X and Q(X) = q0 + q1X be two polynomials
of degree 1 in a given polynomial ring. The result of the product is

P (X)×Q(X) = p0q0 + (p0q1 + p1q0)X + p1q1X
2.

Naively, we have four multiplications and one addition over the coefficients.
Thus, the schoolbook multiplication [8] requires n2 multiplications in F2m . The
Karatsuba algorithm uses the following equation

(p0q1 + p1q0) = (p0 + p1)(q0 + q1)− p0q0 − p1q1,

and P (X)×Q(X) requires only three multiplications and four additions/subtractions
over the coefficients. To reduce the number of multiplications in F2m , we imple-
ment a combination of Schoolbook multiplication and Karatsuba method [9] as
described in Algorithm 8.

Algorithm 3: Karatsuba multiplication
Input: two polynomials f and g ∈ Fn

2m and N the number of coefficients of f
and g

Output: f · g in Fn
2m

1 if N odd then
2 result ← Schoolbook(f ,g, N)
3 return result

4 N
′
← N/2

5 Let f(x) = f0(x) + f1(x)x
N
′

6 Let g(x) = g0(x) + g1(x)x
N
′

7 R1 ← Karatsuba(f0,g0, N
′
) // Compute recursively f0g0

8 R2 ← Karatsuba(f1,g1, N
′
) // Compute recursively f1g1

9 R3 ← f0 + f1
10 R4 ← g0 + g1

11 R5 ← Karatsuba(R3, R4, N
′
) // Compute recursively R3R4

12 R6 ← R5 −R1 −R2

13 return R1 +R6x
N′ +R2x

2N

In line 4 (Algorithm 8), we divide the polynomial’s length N by 2. Consequently,
we need to add a padding to the input polynomials with zero coefficients to obtain
N even. In Figure 2, we observe that the cycles’ number is not strictly increasing
due to the division by 2.
Depending on the memory available for a multiplication in F2m [X]/(Pn), we can
add more or less padding. For example, in ROLLO-I-128 with n = 47, we decide
to add one zero coefficient which allows us to reduce considerably the number
of cycles; however, in ROLLO-I-192 with n = 53 we have two possibilities: pad
the polynomials with 3 or 11 coefficients. The second possibility is about 10%
faster but requires an additional memory cost of 11 × d89/32e × 4 = 132 bytes
per polynomial. That is why the first choice represents a good balance between
memory and execution time.



Optimized and secure implementation of ROLLO-I 9

0 10 20 30 40 50 70

0

0.2

0.4

0.6

0.8

1

1.2

·107

56 64

Polynomial length

C
yc
le
s

Fig. 2. Number of cycles required by Karatsuba combined with schoolbook multipli-
cation depending on the polynomial length

2.2.2 Inversion

For the inversion in F2m [X]/(Pn), we adjust extended Euclidean algorithm given
in [7, Algo. 2.48] to the ring F2m [X]/(Pn) as described i Algorithm 4.
During the execution of the extended Euclidean algorithm, we have in memory:

• the polynomial to be inverted Q;
• a copy of Q (in order to keep it in memory);
• the dividend;
• the two Bézout coefficients;
• three buffers used to perform intermediates operations (swap between poly-

nomials, results of multiplications).

A way to implement it is to allocate the maximum memory size for each element.
As each element can be composed of n coefficients in F2m , the computation of the
inverse in F2m [X]/(Pn) requires 8×n×mb bytes. Considering the parameters of
ROLLO-I-128, ROLLO-I-192 and ROLLO-I-256 the memory usage represents
respectively 4, 512, 5, 088, and 8, 576 bytes, thus exceeding the memory size
available on the target microcontroller for all parameters sets. However, during
the algorithm we notice that:

• the degree of the polynomial Q is at most n−1 and the degree of the dividend
is n at the beginning of the process, both decrease during the execution;

• the degrees of the two Bézout coefficients are 0 at the beginning and increase
during the process.

Thus, we decide to perform a dynamic memory allocation by setting the nec-
essary memory space for each element at each step of the inversion process.



10 Mortajine et al.

Algorithm 4: Inversion in F2m [X]/(Pn)

Input: Q a polynomial in F2m [X]/(Pn)
Output: Q−1 mod Pn

1 U ← Q, V ← Pn

2 G1 ← 1, G2 ← 0
3 while U 6= 1 do
4 j ←− deg(U)− deg(V )
5 if j < 0 then
6 U ↔ V
7 G1 ↔ G2

8 j ← −j
9 lc_V ← Vdeg(V )−1 // leading coefficient of V

10 U ← U +Xj .(lc_V )−1.V
11 lc_G2 ← G2deg(G2)−1

// leading coefficient of G2

12 G1 ← G1 +Xj .(lc_G2)
−1.G2

13 return G1

The memory usage is reduced to 2, 590, 2, 904 and 4, 864 bytes respectively for
ROLLO-I-128, ROLLO-I-192 and ROLLO-I-256.

2.2.3 Rank Support Recovery (RSR) algorithm

The main memory issue in the RSR algorithm [5, Algo. 1] is the multiple
intersections between sub-spaces over Fn

2m . Considering two sub-spaces U =
〈u0, u1, · · · , un−1〉 and V = 〈v0, v1, · · · , vn−1〉 and their associated vectors u =
(u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1) in Fn

2m . The intersection IU,V =
U ∩ V is computed by following the Zassenhaus algorithm [10], as described
below:

• Create the block matrix ZU,V =

(
M(u) M(u)
M(v) 0

)
;

• Apply the Gaussian elimination on ZU,V to obtain a row echelon form ma-
trix;

• The resulting matrix has the following shape:

M(c) ∗
0 IU,V

0 0

,

where c ∈ Fn
2m .

In the initial RSR algorithm, some pre-computations are performed to avoid
additional operations on data. First, we pre-compute Si = f−1i S, for 1 ≥ i ≥ d,
where fi are the elements of the support F . As each Si is composed of r×d coef-
ficients in F2m . then, r×d×d×mb bytes are needed for the Si pre-computations.
Then, the intersections Si,i+1 = Si ∩ Si+1, for 1 ≥ i ≥ d− 1, are each composed
of r elements in F2m . For the pre-computations of the intersections Si,i+1, we
also need to consider the memory usage induced by the Zassenhaus algorithm.
It requires writing in memory four Si, in other words 4× r × d×mb bytes.



Optimized and secure implementation of ROLLO-I 11

Furthermore, for these pre-computations, the private key’s support F (d coeffi-
cients) and the support of the syndrome S (r × d coefficients) are needed.
Thus, the average memory cost of all these pre-computations is:

Memorypre−computed = (r × d× (d+ 5) + (d− 3)× r + d)×mb.

With this formula, we can predict that ROLLO-I-128 requires 4, 212 bytes to
store the pre-computations which is too high for our chosen microcontroller. In
order to reduce the memory cost, we store in memory at most three Si and
directly compute the two associated intersections as framed in Algorithm 5.

Algorithm 5: RSR (Rank Support Recover)
1 Input: F = 〈f1, · · · , fd〉 an Fq-subspace of F2m , s = (s1, · · · , sn) ∈ Fn

2m

syndrome of an error e and r the rank’s weight of e
Output: Vector subspace E

2 Compute S = 〈s1, · · · , sn〉
// Recall that Si = f−1

i S
3 tmp1 ← S1

4 tmp2 ← S2

5 tmp3 ← S3

6 Compute S1,2 = tmp1 ∩ tmp2
7 for i from 1 to d− 2 do
8 Compute Si+1,i+2 = tmpi+1 ∩ tmpi+2

9 Compute Si,i+2 = tmpi ∩ tmpi+2

10 tmp(i−1)%3+1 ← Si+3

11 for i from 1 to d-2 do
12 tmp← S + F · (Si,i+1 + Si+1,i+2 + Si,i+2)
13 if dim(tmp) ≤ rd then
14 S ← tmp;

15 E ←
⋂

1≤i≤d

f−1
i · S

16 return E

After the modifications, the total memory cost is:

Memorypre−computed = (8× r × d+ (d− 3)× r + d)×mb.

This method allows us to save (d− 3)× r× d×mb bytes. The gains in memory
for each security level are presented in the Table 5.

Algorithm Save bytes
ROLLO-I-128 1080
ROLLO-I-192 2016
ROLLO-I-256 4480

Table 5. Memory gains with the modified RSR algorithm



12 Mortajine et al.

2.3 Performance evaluation

The two implementations are implemented in C on a microcontroller, based on a
widely used 32-bit SecurCore R© SC300TM, which has an embedded 32-bit math-
ematical crypto co-processor to perform operations in GF (p) and GF (2m) and a
True Random Number Generator (TRNG). Among the 24kB of RAM featuring
on the microcontroller only 4 kB are available for cryptographic computations.
For performance measurements, we use IAR compiler C/C++ with high-speed
optimization level and we count the number of cycles with the debugging func-
tionality of the IAR Embedded Workbench IDE [11].
An element in GF (qm)n is represented by n× dm/32e × 4 bytes. For ROLLO-I-
128, m = 79 and for ROLLO-I-192, m = 89, we obtain d79/32e = d89/32e = 3
32-bit words. Thus, the memory usages for ROLLO-I-128 and ROLLO-I-192 only
differ according to n. Nevertheless, for ROLLO-I-256, d113/32e = 4, which ex-
plains the important difference of memory usage between the higher security and
the two lowers. To compute the memory usage, we differentiate the full software
implementations and ones using the crypto co-processor.

For the full software implementations, we take into account the space required
for keys. However, we notice in ROLLO-I cryptosystem (Table 4) that the part
y of the secret key is only used on the Key Generation process. We suppose that
this part is used, with the public key h, to prove the integrity of the other part
x. Thus, to reduce the memory used, we decide to store the Cyclic Redundancy
Check (CRC) of (x,y), instead of the part y, leading us to keep the proof of
integrity of x and thus without reducing the security. The result of CRC is stored
in a 32-bit word.
For the implementations using the crypto co-processor, the memory usage refers
to the RAM required to perform the cryptosystem, the keys being stored in the
EEPROM (Electrically Erasable Programmable Read-Only memory). As we can
see in Table 6, ROLLO-I-256 cannot be implemented in our target because its
memory usage exceeds significantly the 4kB of RAM.

Full software With co-processor

Security
Algo. GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 3,520 3,592 3,964 2,940 2,940 3,320
ROLLO-I-192 4,120 4,188 5,096 3,448 3,432 4,334
ROLLO-I-256 7,440 7,152 8,992 6,288 5,872 7,776

Table 6. Memory usage for ROLLO-I (in bytes)

All the operations in GF (2m) take advantage of the crypto co-processor, leading
the implementations using the crypto co-processor of ROLLO-I-128 and ROLLO-
I-192 to be faster than their full software versions. We can see on Table 7 the
number of cycles and the time in milliseconds required by ROLLO-I for the
different security levels with the microcontroller running at 50MHz. We do not



Optimized and secure implementation of ROLLO-I 13

compare our implementations with others implementations as they do not fit
into the target microcontroller.

Full software on SC300 On SC300 with co-processor
Security GenKey Encap Decap GenKey Encap Decap

ROLLO-I-128 cycles (×106) 15.47 1.99 4.31 8.68 0.55 3.75
ms 309 40.8 86.3 173.6 11 75

ROLLO-I-192 cycles (×106) 21.31 3.38 7.8 11.11 0.8 6.63
ms 426 67.6 156 222.2 16 132.6

ROLLO-I-256 cycles (×106) 39.92 6.62 15.54 ND ND ND
ms 798.5 132.5 310.8 ND ND ND

Table 7. Execution time of ROLLO-I

To see if ROLLO-I can be a realistic alternative to the current key exchange
schemes, we compare in Table 8 the full software implementations with Ellip-
tic Curve Diffie-Hellman key Exchange (ECDH) [12] implemented on the same
platform.
For ROLLO-I, the key agreement takes into account the Encapsulation and De-
capsulation processes. As a remainder, for ECDH, two entities compute two
scalars multiplication over E(Fq) in parallel to establish a shared secret. Thus,
for its cost’s estimation, we only consider the two scalar multiplications.

Security Algorithm Clock cycle (×106)
128 ROLLO-I-128 6.3

ECDH Curve 256 3.49
192 ROLLO-I-192 11.18

ECDH Curve 384 8.45
Table 8. Performance comparison between ROLLO-I and ECDH for two different
security levels.

We observe that the two implementations are of the same order of magnitude.

3 Side-channel attack on ROLLO-I

Side-channel attacks were first introduced by Kocher in 1996 [13]. Some of these
attacks exploit the leakage information coming from a device executing a cryp-
tographic protocol. An adversary extracts these information without having to
tamper with the device.
In this section, we deal with chosen-ciphertext Simple Power Analysis (SPA) at-
tack. With the observation of the power traces, SPA attack consists of identifying
sequences of an algorithm to recover the key.

3.1 Attack

ROLLO-I does not require the use of ephemeral keys. The generation of keys is
generally performed once in the life cycle of a component. Whereas encapsula-



14 Mortajine et al.

tion and decapsulation processes are performed several times with the same key
pair ((x,y,F),h). The SPA attack leads us to recover the private key, used to
establish the shared secret between two entities.
The decapsulation process is a good target for side-channel attacks because it
involves the secret key x during the syndrome computation

s = x · c mod Pn.

Then, the aim of the attack is to recover the syndrome. The syndrome’s support
computation S applies Gaussian elimination algorithm to the matrix associated
to the syndrome s. The standard Gaussian elimination on a binary matrix is
given in Algorithm 6.

Algorithm 6: Gaussian elimination algorithm
Input: Matrix M ∈Mn,m(F2)
Output: Matrix M under row echelon form and the rank rank of the matrix

1 Rank ← 0
2 for i = 0 to m− 1 do
3 for j = i to n− 1 do
4 if Mj,i = 1 then
5 // The line j is a pivot
6 line i↔ line j
7 rank ← rank +1
8 break

9 for k = line i+ 1 to n do
10 if Mk,i = 1 then
11 line k ← line k + line i

12 return (M, rank)

The first non-zero coefficient (i.e. 1) in the column is the pivot. With the first
for loop (line 3 – Algorithm 6) we scan each coefficient in the column to find
the pivot. Then we exchange the current line of the founded coefficient with the
pivot line. The time required to determine the pivot indicates the number of
coefficients processed and allows us to recover the pivot line.
With the second loop for (line 9 - Algorithm 6), we remove the other coefficients
1 in the column.
Specifically, two different treatments are performed on each coefficients:

1. If the coefficient is 0 then no operation is performed.
2. If the coefficient is 1 then an addition in GF (2m) is performed between the

pivot row and the one processed.

This difference of treatment leads us to determine the rows where the coefficients
are 1. The syndrome’s rank is at most r.d, thus, at the end of the process, we
obtain a matrix Ms in row echelon form with the first column known by the



Optimized and secure implementation of ROLLO-I 15

attacker.

Ms =


s0,0 ∗ ∗ ∗ ∗ ∗
s1,0 s1,1 ∗ ∗ ∗ ∗
...

...
. . . ∗ ∗ ∗

sn−1,0 sn−1,1 · · · sn−1,r×d−1 ∗ ∗


That is why we only consider the first column for the attack. To recover the syn-
drome, we perform m rotations of the matrix Ms modulo Pm with the use of the
initial ciphertext. Specifically, we multiply the ciphertext by xi in F2[x]/(Pm),
with 0 ≤ i < m.
However, we have to consider the modular rotation during the recovering of the
columns’ syndrome matrix. For example, with ROLLO-I-128 parameters given
in Table 3, multiplying the ciphertext by x modulo (x79 + x9 + 1) implies that
the last column of the matrix syndrome is xored with the columns 0 and 9 as
depicted in Figure 3.

Fig. 3. Example of modular rotation for the syndrome’s matrix for ROLLO-I-128

The column 78 is recovered as explained above and to recover the column 9 xored
with column 78, we multiply the ciphertext by x69 modulo Pm(x). In ROLLO-
I-128 and ROLLO-I-256, we need to keep in mind the xor when recovering the
columns 1 to 8. For ROLLO-I-192, columns 1 to 38 are concerned.

To develop this attack, we target the implementation using the crypto co-processor.
For the experiment, we consider the parameters of ROLLO-I-128, namely n= 47,
and m= 79. The secret key x and the ciphertext c involved in the syndrome com-
putation are generated during the Key Generation and Encapsulation processes.
ROLLO-I-128 traces are captured with a Lecroy SDA 725Zi-A oscilloscope. We
observe in Figure 4 the difference of patterns between the treatment of the bits 1
and 0. This trace allows us to recover the first column of the syndrome’s matrix
corresponding to

10110101110111010001010111001111001001110010110.

We use the same techniques to recover all the columns after the matrix rotation
and finally the syndrome.



16 Mortajine et al.

Fig. 4. SPA performed on the first column during Gaussian elimination process

3.2 Countermeasures

Let us discuss solutions to secure the cryptosystem against the attack explained
previously in Section 3.1. Several solutions are available to protect the Gaussian
elimination against SPA attacks.

A first one is to randomize the treatment of coefficients in each column as de-
scribed in Algorithm 7.
An attacker is not able to recover the indices of the pivot and the processed
rows. Considering the first column, the attacker has n possibilities for the pivot
and m! possibilities for the row treatment. Thus the complexity of the SPA at-
tack is (n!)m. For example, with ROLLO-I-128, the complexity is (47!)79 which
corresponds to about 215,591 possibilities.

Let us go back to the previous experiment. With the same parameters, Figure 5
provides the trace of the execution of Gaussian elimination with the counter-
measure presented in Algorithm 7.
Although we can still set the coefficients 0 and 1, the order of the elements in
each column is completely random so we can not exploit this information any
more longer.

Two other solutions consist of:

• adding dummy operations when processing the coefficients 0 as described in
Algorithm 8;



Optimized and secure implementation of ROLLO-I 17

Algorithm 7: Gaussian elimination with countermeasures
Input: Matrix M ∈Mn,m(F2)
Output: Matrix under row echelon form

1 Rank ← 0
2 for i = 0 to m− 1 do
3 for j = i to n− 1 do
4 jrand = (j + random()) mod (n− i)
5 if Mjrand,i = 1 then
6 // The line jrand is a pivot
7 line i↔ line jrand

8 Rank ← Rank +1
9 break

10 for k = line i+ 1 to n do
11 krand = (k + random()) mod (n− k)
12 line k ↔ line krand

13 if Mk,i = 1 then
14 line krand ← line krand + line i

15 return (M,Rank)

Fig. 5. Trace of the first column in Gaussian elimination process after application of
randomization

• implementing a constant-time algorithm in which the additions in F2[x]/(Pm)
are independent from the processed coefficients as presented in [14].

These solutions require an additional element in GF (2m).
With these solutions an attacker is no longer able to exploit patterns according
to the processed bit.
However, these solutions are subjected to others side-channel attacks that are
not covered in this paper such as Differential Power Analysis (DPA) attacks. .

With the implementation of the second countermeasure, we observe in Figure 6
a uniformization of the trace due to the added noise.



18 Mortajine et al.

Algorithm 8: Gaussian elimination algorithm
Input: Matrix M ∈Mn,m(F2)
Output: Matrix M in row echelon form and the rank rank of the matrix

1 Dim ← 0
2 Temp ← 0
3 for i = 0 to m− 1 do
4 for j = i to n− 1 do
5 if Mj,i = 1 then
6 // The row j is a pivot
7 row i↔ row j
8 rank ← rank +1
9 break

10 for k = row i+ 1 to n do
11 if Mk,i = 1 then
12 row k ← row k + row i

13 else
14 Temp ← row k + row i

15 return (M, rank)

Fig. 6. Trace of the first column in Gaussian elimination with dummy operations.

As we can see in Table 9, regarding the first countermeasure, exchanging two rows
at each iteration has a significant impact on the execution time of decapsulation
process, increasing it by about 50%. The second countermeasure impacts the
execution time by about 40%.

Conclusion

In this paper, we have highlighted that ROLLO-I can be implemented in a con-
strained environment and the structure used allows the cryptosystem to benefit



Optimized and secure implementation of ROLLO-I 19

Decapsulation
Security With randomization With dummy operation Without countermeasures

128 cycles (×106) 8.09 5.84 4.31
ms 161.8 116.6 86.3

192 cycles (×106) 17.01 11.23 7.8
ms 340.2 224.6 156

256 cycles (×106) 32.45 21.62 15.54
ms 649 432.4 310.8

Table 9. Executing time of ROLLO-I decapsulation with countermeasures.

from the current crypto co-processor. We have also shown that in comparison
with existing algorithms such as ECDH, our implementation’s performances were
compelling.
Moreover, we have provided a first side-channel attack on ROLLO-I as well as
countermeasures against the proposed attack.
For future works, it will be interesting to look up some optimizations in time for
operations in Fqm [X]/(Pn) and extend the study to ROLLO-II and ROLLO-III.

References

1. Ingo Maurich and Tim Güneysu. Towards side-channel resistant implementations
of qc-mdpc mceliece encryption on constrained devices. volume 8772, pages 266–
282, 10 2014.

2. Tania Richmond, Martin Petrvalsky, and Milos Drutarovsky. A Side-Channel At-
tack Against the Secret Permutation on an Embedded McEliece Cryptosystem.
In 3rd Workshop on trustworthy manufacturing and utilization of secure devices -
TRUDEVICE 2015, Grenoble, France, March 2015.

3. Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zémor. Low rank
parity check codes and their application to cryptography. 04 2013.

4. Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, Olivier Ruatta, and Gilles
Zémor. Low Rank Parity Check Codes: New Decoding Algorithms and Applications
to Cryptography. CoRR, abs/1904.00357, 2019.

5. Carlos Aguilar Melchor, Nicolas Aragon, Magali Bardet, Slim Bettaieb, Loïc
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Adrien Hauteville Philippe Ga-
borit, Ayoub Otmani, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. NIST
PQC second round submisssion : ROLLO - Rank-Ouroboros, LAKE & LOCKER,
2017.

6. National Instute of Standards and Technology. Submission Requirements and
Evaluation Criteria for the Post-Quantum Cryptography Standardization Process,
2016.

7. Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, Berlin, Heidelberg, 2003.

8. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics
and Its Applications. CRC Press, 2005.

9. André Weimerskirch and Christof Paar. Generalizations of the Karatsuba Al-
gorithm for Efficient Implementations, 2006. aweimerskirch@escrypt.com 13331
received 2 Jul 2006.



20 Mortajine et al.

10. Eugene Luks, Ferenc Rakoczi, and Charles Wright. Some Algorithms for Nilpotent
Permutation Groups. J. Symb. Comput., 23:335–354, 04 1997.

11. IAR Embedded Workbench.
12. SEC 1. Standards for Efficient Cryptography Group: Elliptic Curve Cryptography

- version 2.0, 2009.
13. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK,
UK, 1996. Springer-Verlag.

14. Florian Caullery Rusydi H. Makarim Marc Manzano Chiara Marcolla Car-
los Aguilar-Melchor, Emanuele Bellini and Victor Mateu. Constant-
timealgorithmsforROLLO. 2019.

15. Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Olivier Blazy Loïc Bidoux,
Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Car-
los Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-
Pierre Tillich, Gilles Zémor, and Valentin Vasseur. NIST PQC submisssion : BIKE
- Bit Flipping Key Encapsulation, 2017.

16. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Olivier Blazy Loïc Bidoux,
Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles Zé-
mor. NIST PQC submisssion : Hamming Quasi-Cyclic (HQC), 2017.

17. Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Olivier Blazy Loïc Bidoux,
Jean-Christophe Deneuville, Philippe Gaborit, Gilles Zémor, Alain Couvreur, and
Adrien Hauteville. NIST PQC submisssion : Rank Quasi-Cyclic (RQC), 2017.

18. Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Adrien Hauteville
Philippe Gaborit, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. NIST
PQC first round submisssion : LAKE - Low rAnk parity check codes Key Ex-
change, 2017.

19. Nicolas Aragon, Olivier Blazy, Slim Bettaieb, Loïc Bidoux, Jean-Christophe
Deneuville, Adrien Hauteville Philippe Gaborit, Olivier Ruatta, and Gilles Zé-
mor. NIST PQC first round submisssion : LOCKER - LOw rank parity ChecK
codes EncRyption , 2017.

20. Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Adrien Hauteville
Philippe Gaborit, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. NIST
PQC first round submisssion : Ouroboros-R , 2017.

21. R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, January 1978.

22. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory,
pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

23. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum Key Exchange—A New Hope. In 25th USENIX Security Symposium
(USENIX Security 16), pages 327–343, Austin, TX, 2016. USENIX Association.

24. Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster Multiplica-
tion in z2m[x] on Cortex-M4 to Speed up NIST PQC candidates. In ACNS, volume
11464 of Lecture Notes in Computer Science, pages 281–301. Springer, 2019.

25. Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and Ingrid Ver-
bauwhede. Saber on ARM CCA-secure module lattice-based key encapsulation on
ARM. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):243–266, 2018.

26. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4


Optimized and secure implementation of ROLLO-I 21

27. Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997.

28. Philippe Delsarte. Bilinear forms over a finite field, with applications to coding
theory. J. Comb. Theory, Ser. A, 25:226–241, 1978.

29. R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147–160, April 1950.

Appendix A Algorithm

In this section, we present in Algorithm 9 the inversion of binary polynomials in
F2[x]/(Pm) that we implemented and raised in Section 2.

Algorithm 9: Inversion in F2[x]/(Pm)

Input: a a non zero binary polynomial of degree at most m− 1
Output: a−1 mod Pm

1 u← a, v ← Pm

2 g1 ← 1, g2 ← 0
3 while u 6= 1 do
4 j ←− deg(u)− deg(v)
5 if j < 0 then
6 u↔ v
7 g1 ↔ g2
8 j ← −j
9 u← u+ xjv

10 g1 ← g1 + xjg2

11 return g1


	Optimized and secure implementation of ROLLO-I

